Some Generalizations of Relay Fusion Frames and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mfenced open="(" close=")" separators="|"> <mrow> <mi>F</mi> <mo>,</mo> <mi>G</mi> </mrow> </mfenced> </math>-Relay Fusion Frames in Hilbert <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <msup> <mrow> <mi>C</mi> </mrow> <mi>∗</mi> </msup> </math>-Modules
نویسندگان
چکیده
The relay fusion frame proposed by Hong and Li is an extension of a that has many applications in science. In this study, we introduce frames Hilbert C ∗ -modules very naturally shift some common attributes spaces to id="M4"> -modules. addition, generalize perturbation results theory id="M5"> Finally, class id="M6"> F , G -relay as generalization id="M7"> K -frames present for id="M8"> id="M9">
منابع مشابه
Approximate Duals of $g$-frames and Fusion Frames in Hilbert $C^ast-$modules
In this paper, we study approximate duals of $g$-frames and fusion frames in Hilbert $C^ast-$modules. We get some relations between approximate duals of $g$-frames and biorthogonal Bessel sequences, and using these relations, some results for approximate duals of modular Riesz bases and fusion frames are obtained. Moreover, we generalize the concept of $Q-$approximate duality of $g$-frames and ...
متن کاملFUSION FRAMES IN HILBERT SPACES
Fusion frames are an extension to frames that provide a framework for applications and providing efficient and robust information processing algorithms. In this article we study the erasure of subspaces of a fusion frame.
متن کاملFusion Frames and G-Frames in Hilbert C*-Modules
The notion of frame has some generalizations such as frames of subspaces, fusion frames and g -frames. In this paper we introduce frames of submodules, fusion frames and g -frames in Hilbert C∗ -modules and we show that they share many useful properties with their corresponding notions in Hilbert space. We also generalize a perturbation result in frame theory to g -frames in Hilbert spaces.
متن کاملThe study on controlled g-frames and controlled fusion frames in Hilbert C*-modules
Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2023
ISSN: ['2314-4785', '2314-4629']
DOI: https://doi.org/10.1155/2023/5920210